MSP0009-R00 2016年9月21日 エムエス配管解析技術 水野 貞男

20B標準配管モデルによる地震入力方向の検討

1. 概要

関連資料(1)に於いて3次元簡易配管モデルを用いて実施した,地震入力方向と最大応答に関する検討を,20B 標準配管モデルに就いても実施した。

本資料は, 20B 標準配管モデルに関する検討結果をまとめたものであるが, 3 次元簡易配管モデルと全く同じ手順で検討しているので, 関連資料(1)を併せて参照願いたい。

2. 20B 標準配管モデル

図1に20B標準配管モデルを示すが、これは、本文⁽²⁾の第2.8節(p.59)に用いた配管である。

配管は, 20BSch40 の SUS304 配管で, 配管重量は, 管材・内部流体・保温材を含め総合計で 399kg/m である。 節点数は 41, 両端の機器ノズルは 6 自由度のバネ支持とし, 総自由度は 123 である。途中にハンガーや耐震サ ポートが 7 箇所に取り付けられている。耐震サポートはいずれもバネ支持である。各サポート点には集中付加重 量が, サポート構造物の員数仕様に応じて 100kg 又は 150kg が入力されている。

表1に固有振動数と刺激係数を示す。設計解析上は33Hz までの13次モードまでの計算であるが、3次元簡易 配管モデルに合わせて30次モードまで解析した。1次モードは12.52Hz でX方向が卓越する。30次は124..8Hz でY方向が卓越するモードである。

図1 20B配管サンプル解析モデル(アイソメ図)

<u>X</u> · 200 / X								
モード	振動数f	刺激係数						
No.	Hz	PX	PY	PZ				
1	12.520	0.44068	-0.08097	0.02382				
2	13.958	0.00928	0.49940	-0.05171				
3	14.664	-0.02526	0.74052	-0.04822				
4	15.488	-0.21835	-0.16206	-0.50719				
5	16.212	-0.21858	-0.01168	0.76490				
6	17.857	-0.00983	0.07395	-0.07216				
7	17.950	0.02916	-0.00056	-0.31986				
8	19.163	-0.77375	0.00014	-0.01714				
9	19.565	0.42884	-0.00011	-0.04841				
10	21.663	-0.04108	-0.01719	0.04464				
11	24.167	0.18268	0.00181	0.23674				
12	27.764	0.02077	0.32093	-0.01962				
13	31.058	-0.02071	0.12024	0.01337				
14	43.446	-0.07123	-0.25360	0.00170				
15	43.997	0.09826	-0.00345	0.20165				
16	50.119	0.03885	-0.01004	-0.00372				
17	58.003	-0.05326	-0.05122	-0.01149				
18	61.144	0.03156	0.01311	0.15834				
19	68.342	0.10899	0.03555	0.00640				
20	73.974	-0.05667	0.09460	0.02885				
21	76.289	-0.09012	0.17097	-0.02170				
22	83.247	-0.03246	-0.00985	-0.19927				
23	86.056	-0.02419	0.14231	-0.02288				
24	93.353	-0.04203	0.00342	-0.02267				
25	98.084	0.01340	0.23954	-0.00072				
26	104.158	0.03323	-0.00300	-0.18402				
27	110.063	-0.02624	-0.05426	-0.00838				
28	114.293	-0.08091	0.00018	0.10566				
29	121.733	0.04846	-0.01881	-0.05646				
30	124.858	-0.04888	-0.10348	0.00415				

表1 20B標準配管モデルの固有振動数・刺激係数

3. 座標の回転変換と耐震解析

この 20B 標準配管モデルを,図 2 に示すように Y 軸回りに θ = 30°45°60°などと回転変換させた。 座標変換公式は,

 $Z' = Z\cos\theta + X\sin\theta$ $X' = -Z\sin\theta + X\cos\theta$ (1) 正変換公式 ここに、X'Y'Z':変換後の座標系(Y'はYに同じ。) XYZ:変換前の座標系

である。

この式を用いて,解析モデルの節点座標とサポートの方向余 弦を変換した。

尚,床応答曲線は,本検討目的には直接影響しないので,建 物内の標準的なスペクトルとして3次元簡易配管モデルで使 用した関連資料(1)の図4に示すスペクトル(100倍)を水平2

図2 Y軸回りの回転座標変換と変換公式

方向に入力した。また、簡素化のため、Y軸(鉛直)方向の地震力はゼロとした。

4. 耐震解析結果の検討

θ=30°の解析結果主体に、まず、回転変換前後の固有振動数・固有モード・刺激係数を比較検討する。

(1) 固有振動数

表2に,回転変換前後の固有振動数を比較した。3次元簡易配管モデルで得られた結果と同じであるが,本配管 に就いても、1/1000以下の計算誤差で全モードともよく一致した。

座標変換を行っても、固有値は変わらないことが、本配管に於いても確認された。

<u>表2 20B標準</u> 面	2管モデルの固有	振動数の比較						
T 1°								
	θ							
No.	0°	30°						
1	12.520	12.520						
2	13.958	13.958						
3	14.664	14.664						
4	15.488	15.488						
5	16.212	16.212						
6	17.857	17.857						
7	17.950	17.950						
8	19.163	19.163						
9	19.565	19.566						
10	21.663	21.663						
11	24.167	24.167						
12	27.764	27.765						
13	31.058	31.058						
14	43.446	43.446						
15	43.997	43.997						
16	50.119	50.119						
17	58.003	58.003						
18	61.144	61.144						
19	68.342	68.342						
20	73.974	73.974						
21	76.289	76.290						
22	83.247	83.248						
23	86.056	86.056						
24	93.353	93.354						
25	98.084	98.084						
26	104.158	104.158						
27	110.063	110.064						
28	114.293	114.293						
29	121.733	121.734						
30	124.858	124.859						

(2) 固有モード

座標変換してもモードの形自体は変化しない。成分は変化し、回転前後で相互に座標変換すれば一致する。 表3に、本配管の1次モードに就いて、回転前後で正・逆変換を行った結果を示すが、正・逆変換とも、相互に完 全に一致するのが確認できる。その他のモードに就いても一致することを確認しているが、これは3次元簡易配 管モデルで得られた結果と同じである。

因みに逆変換公式は以下である。

 $Z = Z' \cos \theta - X' \sin \theta$ $X = Z' \sin \theta + X' \cos \theta$ (2) $\forall z \not\equiv z \not\equiv z$

以上より,全てのθに対して座標変換を行えば,いちいち解析するまでもなく,変換後の固有モードを計算できる ことが再確認された。

田方	(有) 節占 回転変換前(θ=0°) 回転変換							回転変換後	έ(θ=30°)				
モードNo.	即员		解析值	正変換後(θ=0°→30°)				解析值			逆変換後(θ=30°		→0°)
	田方	mХ	mY	mZ	mX'	mY'	mZ'	mX'	mY'	mZ'	mΧ	mΥ	mZ
	1	0.1510	0.0030	-0.0902	0.1759	0.0030	-0.0026	0.1758	0.0030	-0.0026	0.1509	0.0030	-0.0902
	2	0.5827	0.0034	-0.3784	0.6938	0.0034	-0.0364	0.6938	0.0034	-0.0364	0.5826	0.0034	-0.3784
	3	1.1471	0.0038	-0.7644	1.3756	0.0038	-0.0884	1.3757	0.0038	-0.0884	1.1472	0.0038	-0.7644
	4	1.2876	0.0039	-0.8626	1.5464	0.0039	-0.1032	1.5465	0.0039	-0.1033	1.2877	0.0039	-0.8627
	5	1.5722	-0.1058	-1.0721	1.8976	-0.1058	-0.1424	1.8977	-0.1058	-0.1424	1.5723	-0.1058	-1.0722
	6	1.6426	-0.2406	-1.0544	1.9497	-0.2406	-0.0918	1.9498	-0.2406	-0.0919	1.6426	-0.2406	-1.0545
	7	1.6434	-0.2830	-0.9043	1.8754	-0.2830	0.0386	1.8754	-0.2830	0.0385	1.6434	-0.2830	-0.9044
	8	1.6439	-0.3207	-0.6598	1.7536	-0.3207	0.2505	1.7536	-0.3207	0.2505	1.6439	-0.3207	-0.6599
	9	1.6438	-0.3421	-0.2644	1.5558	-0.3421	0.5929	1.5558	-0.3421	0.5929	1.6438	-0.3421	-0.2644
	10	1.6430	-0.3497	0.0678	1.3890	-0.3497	0.8802	1.3890	-0.3497	0.8802	1.6430	-0.3497	0.0678
	11	1.6419	-0.3620	0.3202	1.2618	-0.3620	1.0983	1.2618	-0.3619	1.0983	1.6419	-0.3619	0.3203
	12	1.4912	-0.3403	0.6581	0.9624	-0.3403	1.3155	0.9624	-0.3403	1.3155	1.4912	-0.3403	0.6581
	13	1.0903	-0.2732	0.8247	0.5319	-0.2732	1.2594	0.5319	-0.2732	1.2593	1.0903	-0.2732	0.8246
	14	0.7406	-0.2124	0.8247	0.2290	-0.2124	1.0845	0.2291	-0.2124	1.0845	0.7407	-0.2124	0.8247
	15	0.4564	-0.1590	0.8245	-0.0170	-0.1590	0.9422	-0.0169	-0.1590	0.9422	0.4565	-0.1590	0.8244
	16	0.1606	-0.1014	0.8241	-0.2730	-0.1014	0.7940	-0.2729	-0.1014	0.7940	0.1607	-0.1014	0.8241
	17	-0.0933	-0.0375	0.7257	-0.4437	-0.0375	0.5818	-0.4436	-0.0374	0.5818	-0.0933	-0.0374	0.7257
	18	-0.1673	-0.0060	0.5599	-0.4248	-0.0060	0.4012	-0.4248	-0.0060	0.4012	-0.1673	-0.0060	0.5598
	19	-0.1664	-0.0001	0.4500	-0.3691	-0.0001	0.3065	-0.3691	-0.0001	0.3065	-0.1664	-0.0001	0.4500
	20	-0.1652	0.0061	0.3266	-0.3064	0.0061	0.2002	-0.3063	0.0061	0.2003	-0.1651	0.0061	0.3266
1	21	-0.1633	0.0108	0.2000	-0.2414	0.0108	0.0916	-0.2414	0.0108	0.0915	-0.1633	0.0108	0.1999
	22	-0.1614	0.0115	0.1107	-0.1951	0.0115	0.0152	-0.1951	0.0115	0.0152	-0.1614	0.0115	0.1107
	23	-0.1614	0.0091	0.0498	-0.1647	0.0091	-0.0376	-0.1647	0.0091	-0.0376	-0.1614	0.0091	0.0498
	24	-0.1614	0.0049	0.0114	-0.1455	0.0049	-0.0708	-0.1455	0.0049	-0.0708	-0.1614	0.0049	0.0114
	25	-0.1612	0.0014	-0.0049	-0.1372	0.0014	-0.0848	-0.1372	0.0013	-0.0849	-0.1613	0.0013	-0.0049
	26	-0.1611	-0.0009	-0.0116	-0.1337	-0.0009	-0.0906	-0.1337	-0.0009	-0.0906	-0.1611	-0.0009	-0.0116
	27	-0.1539	0.0039	-0.0006	-0.1330	0.0039	-0.0775	-0.1330	0.0039	-0.0775	-0.1539	0.0039	-0.0006
	28	-0.1173	0.0138	0.0134	-0.1083	0.0138	-0.0470	-0.1083	0.0138	-0.0471	-0.1173	0.0138	0.0134
	29	-0.0796	0.0198	0.0134	-0.0756	0.0198	-0.0282	-0.0756	0.0198	-0.0282	-0.0796	0.0198	0.0134
	30	-0.0439	0.0250	0.0135	-0.0448	0.0250	-0.0103	-0.0447	0.0250	-0.0103	-0.0439	0.0250	0.0134
	31	-0.0139	0.0282	0.0026	-0.0133	0.0282	-0.0047	-0.0133	0.0282	-0.0047	-0.0139	0.0282	0.0026
	32	-0.0082	0.0253	-0.0077	-0.0033	0.0253	-0.0108	-0.0032	0.0253	-0.0108	-0.0082	0.0253	-0.0078
	33	-0.0082	0.0214	-0.0090	-0.0026	0.0214	-0.0119	-0.0026	0.0214	-0.0118	-0.0082	0.0214	-0.0089
	34	-0.0081	0.0164	-0.0089	-0.0026	0.0164	-0.0118	-0.0026	0.0164	-0.0118	-0.0082	0.0164	-0.0089
	35	-0.0080	0.0102	-0.0062	-0.0038	0.0102	-0.0094	-0.0038	0.0102	-0.0094	-0.0080	0.0102	-0.0062
	36	-0.0080	0.0060	-0.0032	-0.0053	0.0060	-0.0068	-0.0053	0.0060	-0.0067	-0.0079	0.0060	-0.0032
	37	-0.0079	0.0032	-0.0010	-0.0063	0.0032	-0.0048	-0.0064	0.0032	-0.0048	-0.0079	0.0032	-0.0010
	38	-0.0080	0.0008	0.0000	-0.0069	0.0008	-0.0040	-0.0069	0.0008	-0.0040	-0.0080	0.0008	0.0000
	39	-0.0061	0.0002	-0.0006	-0.0050	0.0002	-0.0036	-0.0050	0.0002	-0.0036	-0.0061	0.0002	-0.0006
	40	-0.0040	0.0001	-0.0006	-0.0032	0.0001	-0.0025	-0.0031	0.0001	-0.0025	-0.0039	0.0001	-0.0006
1	41	-0.0019	0 0000	-0.0005	-0.0014	0 0 0 0 0 0	-0.0014	-0.0014	0 0000	-0.0014	-0.0019	0 0 0 0 0 0	-0.0005

表3 固有モードの正・逆変換結果の比較 (20B標準配管モデル)

(3) 刺激係数

刺激係数は,次式で定義されており,モードベクトルφに依存して座標変換される。尚,分母のφ^TMφはスカラー 定数である。

$$\beta_{x} = \frac{\phi^{T} M I_{x}}{\phi^{T} M \phi}$$

$$\beta_{z} = \frac{\phi^{T} M I_{z}}{\phi^{T} M \phi}$$
(3)

表4に,回転前後の刺激係数を(1)式・(2)式によって正・逆変換して示すが,各モードともよく一致した。 以上より,刺激係数に就いても座標変換により計算できることが再確認された。

エード	田方垢動粉	$\frac{\theta}{\theta} = 0^{\circ} \qquad \qquad \theta = 30^{\circ}$											
	凹竹瓜到奴	解析値			正変換(0°→30°)			解析値			逆変換(30° →0°)		°)
INO.	(Hz)	PX	PY	PZ	PX'	PY'	PZ'	PX'	PY'	PZ'	PX	PY	PZ
1	12.520	0.44068	-0.08097	0.02382	0.36973	-0.08097	0.24097	0.36975	-0.08096	0.24094	0.44068	-0.08096	0.02379
2	13.958	0.00928	0.49940	-0.05171	0.03389	0.49940	-0.04014	0.03388	0.49942	-0.04016	0.00926	0.49942	-0.05172
3	14.664	-0.02526	0.74052	-0.04822	0.00223	0.74052	-0.05439	0.00223	0.74051	-0.05439	-0.02526	0.74051	-0.04822
4	15.488	-0.21835	-0.16206	-0.50719	0.06450	-0.16206	-0.54841	0.06450	-0.16206	-0.54844	-0.21836	-0.16206	-0.50721
5	16.212	-0.21858	-0.01168	0.76490	-0.57175	-0.01168	0.55313	0.57173	0.01169	-0.55313	0.21857	0.01169	-0.76489
6	17.857	-0.00983	0.07395	-0.07216	0.02757	0.07395	-0.06741	0.02756	0.07396	-0.06739	-0.00983	0.07396	-0.07214
7	17.950	0.02916	-0.00056	-0.31986	0.18518	-0.00056	-0.26243	-0.18520	0.00056	0.26241	-0.02918	0.00056	0.31985
8	19.163	-0.77375	0.00014	-0.01714	-0.66152	0.00014	-0.40172	-0.66149	0.00014	-0.40171	-0.77372	0.00014	-0.01715
9	19.565	0.42884	-0.00011	-0.04841	0.39559	-0.00011	0.17250	0.39563	-0.00011	0.17252	0.42889	-0.00011	-0.04841
10	21.663	-0.04108	-0.01719	0.04464	-0.05790	-0.01719	0.01812	0.05790	0.01719	-0.01812	0.04108	0.01719	-0.04464
11	24.167	0.18268	0.00181	0.23674	0.03984	0.00181	0.29636	0.03982	0.00181	0.29636	0.18267	0.00181	0.23675
12	27.764	0.02077	0.32093	-0.01962	0.02780	0.32093	-0.00661	0.02780	0.32092	-0.00661	0.02077	0.32092	-0.01962
13	31.058	-0.02071	0.12024	0.01337	-0.02462	0.12024	0.00122	0.02462	-0.12026	-0.00122	0.02071	-0.12026	-0.01337
14	43.446	-0.07123	-0.25360	0.00170	-0.06254	-0.25360	-0.03414	-0.06254	-0.25360	-0.03415	-0.07124	-0.25360	0.00170
15	43.997	0.09826	-0.00345	0.20165	-0.01573	-0.00345	0.22376	-0.01573	-0.00345	0.22376	0.09826	-0.00345	0.20165
16	50.119	0.03885	-0.01004	-0.00372	0.03551	-0.01004	0.01620	-0.03551	0.01004	-0.01621	-0.03886	0.01004	0.00372
17	58.003	-0.05326	-0.05122	-0.01149	-0.04038	-0.05122	-0.03658	-0.04038	-0.05122	-0.03658	-0.05326	-0.05122	-0.01149
18	61.144	0.03156	0.01311	0.15834	-0.05184	0.01311	0.15291	-0.05183	0.01311	0.15290	0.03156	0.01311	0.15833
19	68.342	0.10899	0.03555	0.00640	0.09119	0.03555	0.06004	0.09119	0.03554	0.06004	0.10899	0.03554	0.00640
20	73.974	-0.05667	0.09460	0.02885	-0.06350	0.09460	-0.00335	0.06350	-0.09461	0.00334	0.05666	-0.09461	-0.02886
21	76.289	-0.09012	0.17097	-0.02170	-0.06720	0.17097	-0.06385	-0.06719	0.17096	-0.06386	-0.09012	0.17096	-0.02171
22	83.247	-0.03246	-0.00985	-0.19927	0.07152	-0.00985	-0.18880	0.07153	-0.00985	-0.18880	-0.03245	-0.00985	-0.19927
23	86.056	-0.02419	0.14231	-0.02288	-0.00951	0.14231	-0.03191	0.00950	-0.14231	0.03191	0.02418	-0.14231	0.02288
24	93.353	-0.04203	0.00342	-0.02267	-0.02506	0.00342	-0.04065	-0.02506	0.00342	-0.04066	-0.04203	0.00342	-0.02268
25	98.084	0.01340	0.23954	-0.00072	0.01196	0.23954	0.00608	0.01197	0.23954	0.00608	0.01341	0.23954	-0.00072
26	104.158	0.03323	-0.00300	-0.18402	0.12079	-0.00300	-0.14275	0.12079	-0.00300	-0.14275	0.03323	-0.00300	-0.18402
27	110.063	-0.02624	-0.05426	-0.00838	-0.01853	-0.05426	-0.02038	-0.01854	-0.05426	-0.02038	-0.02625	-0.05426	-0.00838
28	114.293	-0.08091	0.00018	0.10566	-0.12290	0.00018	0.05105	-0.12288	0.00019	0.05104	-0.08090	0.00019	0.10564
29	121.733	0.04846	-0.01881	-0.05646	0.07020	-0.01881	-0.02467	-0.07019	0.01881	0.02466	-0.04846	0.01881	0.05645
30	124 858	-0.04888	-0 10348	0.00415	-0.04441	-0 10348	-0.02085	-0.04441	-0 10348	-0.02085	-0.04889	-0 10348	0 00415

表4 θ=0°と30°の場合の刺激係数の正·逆変換結果 (20B標準配管モデル)

以上の結果より,任意の θ 方向に地震力が入力された場合の地震応答は, θ 方向への座標変換によって得られることが分かった。

その手順は, 関連資料(1) 第5項に示した 5 ステップとなるが, 20B 標準配管モデルに対してもその妥当性が確認された。

5. 最大応答値の評価

関連資料(1)に於いては、3次元簡易配管を用いて最大応答の求め方を詳細に検討したが、ここでは、20B標準 配管を用いて同じ検討を行う。

(1) モード毎の応答

表 5 に, 20B 標準配管の刺激係数と主軸方向角 α (= θ)を, 1 次から 30 次までに就いて示す。

水平方向に卓越するモードに就いて主軸方向角 α (= θ)を調べると、1次モードは θ =86.91°,次に卓越する4次 モードでは*θ*=23.29°となることが分かる。

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	表5 20B標準配管の刺激係数の主軸方向(ゼロー最大値)								主軸方	向に座標変	換した刺激	係数
L μ_z SAXSAYSAZPXPYPZ $\alpha = \theta$ (\mathbf{g})PX'PY'PZ'112.520136.240.00136.240.4407-0.08100.023886.910.0000-0.08100.4413213.958120.000.00120.00-0.02530.7405-0.048227.650.00000.7405-0.0525314.664120.000.00120.00-0.02530.7405-0.048223.290.0000-7.0512-0.5522516.212120.000.00120.00-0.2184-0.1621-0.507223.290.0000-0.1621-0.5522717.850120.000.00120.00-0.0288-0.00170.7760.00000.01170.7855617.857120.000.00120.00-0.0728-0.0016-0.3199-5.210.0000-0.0066-0.3212819.163120.000.00120.00-0.77380.0011-0.0484-88.560.0000-0.0017-0.43161021.663102.730.00102.73-0.0411-0.01720.0446-42.620.0000-0.01220.02471124.16781.200.0063.29-0.00180.236737.660.00000.03209-0.02861227.6471.020.0061.20-0.02270.12020.0134-57.150.00000.3209-0.02861331.05867.200.00 <th>エード</th> <th>垢 動 粉 f</th> <th>床応</th> <th>答スペクト</th> <th>レ値</th> <th></th> <th>刺激係数</th> <th></th> <th>主軸方向角</th> <th colspan="2">刺激係数</th> <th></th>	エード	垢 動 粉 f	床応	答スペクト	レ値		刺激係数		主軸方向角	刺激係数		
No.HzGAXGA1GA2TAT1T2(\underline{e})TAT1T2112.520136.240.00136.240.4407-0.08100.023886.910.0000-0.08100.4413213.958120.000.00120.000.00930.4994-0.0517-10.170.00000.4994-0.0525314.664120.000.00120.00-0.2184-0.1621-0.507223.290.0000-0.1621-0.5522516.212120.000.00120.00-0.2186-0.01170.7649-15.950.0000-0.01710.7955617.857120.000.00120.00-0.0292-0.006-0.3199-5.210.0000-0.0066-0.3212819.163120.000.00120.00-0.77380.001-0.017188.730.0000-0.001-0.739919.565120.000.00120.000.4288-0.001-0.4464-42.620.0000-0.01720.60611021.663102.730.0081.200.18270.0180.236737.660.00000.3209-0.02681331.05867.200.0067.20-0.02070.12020.0134-57.150.0000-0.0320-0.25361443.44663.840.0063.34-0.0712-0.25360.0017-88.630.0000-0.25360.07131543.99763.79		加速到或口	SAY	SAV	SA7	DY	DV	D7	$\alpha = \theta$	DY,		D7'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Hz	377	371	342			12	(度)		1.1	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	12.520	136.24	0.00	136.24	0.4407	-0.0810	0.0238	86.91	0.0000	-0.0810	0.4413
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	13.958	120.00	0.00	120.00	0.0093	0.4994	-0.0517	-10.17	0.0000	0.4994	-0.0525
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	14.664	120.00	0.00	120.00	-0.0253	0.7405	-0.0482	27.65	0.0000	0.7405	-0.0544
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	15.488	120.00	0.00	120.00	-0.2184	-0.1621	-0.5072	23.29	0.0000	-0.1621	-0.5522
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	16.212	120.00	0.00	120.00	-0.2186	-0.0117	0.7649	-15.95	0.0000	-0.0117	0.7955
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	17.857	120.00	0.00	120.00	-0.0098	0.0740	-0.0722	7.76	0.0000	0.0740	-0.0728
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	17.950	120.00	0.00	120.00	0.0292	-0.0006	-0.3199	-5.21	0.0000	-0.0006	-0.3212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	19.163	120.00	0.00	120.00	-0.7738	0.0001	-0.0171	88.73	0.0000	0.0001	-0.7739
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	19.565	120.00	0.00	120.00	0.4288	-0.0001	-0.0484	-83.56	0.0000	-0.0001	-0.4316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	21.663	102.73	0.00	102.73	-0.0411	-0.0172	0.0446	-42.62	0.0000	-0.0172	0.0607
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	24.167	81.20	0.00	81.20	0.1827	0.0018	0.2367	37.66	0.0000	0.0018	0.2990
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	27.764	71.02	0.00	71.02	0.0208	0.3209	-0.0196	-46.63	0.0000	0.3209	-0.0286
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	31.058	67.20	0.00	67.20	-0.0207	0.1202	0.0134	-57.15	0.0000	0.1202	0.0247
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	43.446	63.84	0.00	63.84	-0.0712	-0.2536	0.0017	-88.63	0.0000	-0.2536	0.0713
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	43.997	63.79	0.00	63.79	0.0983	-0.0035	0.2017	25.98	0.0000	-0.0035	0.2243
17 58.003 62.87 0.00 62.87 -0.0533 -0.0512 -0.0115 77.83 0.000 -0.0512 -0.0545 18 61.144 62.73 0.00 62.73 0.0316 0.0131 0.1583 11.27 0.0000 0.0131 0.1615 19 68.342 62.44 0.00 62.44 0.1090 0.0356 0.0064 86.64 0.0000 0.0356 0.1092 20 73.974 62.25 0.00 62.25 -0.0567 0.0946 0.0289 -63.02 0.0000 0.0346 0.0636 21 76.289 62.18 0.00 62.18 -0.0901 0.1710 -0.0217 76.46 0.0000 0.1710 -0.0927	16	50.119	63.33	0.00	63.33	0.0389	-0.0100	-0.0037	-84.53	0.0000	-0.0100	-0.0390
18 61.144 62.73 0.00 62.73 0.0316 0.0131 0.1583 11.27 0.0000 0.0131 0.1615 19 68.342 62.44 0.00 62.44 0.1090 0.0356 0.0064 86.64 0.0000 0.0356 0.1092 20 73.974 62.25 0.00 62.25 -0.0567 0.0946 0.0289 -63.02 0.0000 0.0946 0.0636 21 76.289 62.18 0.00 62.18 -0.0901 0.1710 -0.0217 76.46 0.0000 0.1710 -0.0927	17	58.003	62.87	0.00	62.87	-0.0533	-0.0512	-0.0115	77.83	0.0000	-0.0512	-0.0545
19 68.342 62.44 0.00 62.44 0.1090 0.0356 0.0064 86.64 0.0000 0.0356 0.1092 20 73.974 62.25 0.00 62.25 -0.0567 0.0946 0.0289 -63.02 0.0000 0.0946 0.0636 21 76.289 62.18 0.00 62.18 -0.0901 0.1710 -0.0217 76.46 0.0000 0.1710 -0.0927	18	61.144	62.73	0.00	62.73	0.0316	0.0131	0.1583	11.27	0.0000	0.0131	0.1615
20 73.974 62.25 0.00 62.25 -0.0567 0.0946 0.0289 -63.02 0.0000 0.0946 0.0636 21 76.289 62.18 0.00 62.18 -0.0901 0.1710 -0.0217 76.46 0.0000 0.1710 -0.0927	19	68.342	62.44	0.00	62.44	0.1090	0.0356	0.0064	86.64	0.0000	0.0356	0.1092
21 76 289 62 18 0.00 62 18 -0.0901 0.1710 -0.0217 76 46 0.0000 0.1710 -0.0927	20	73.974	62.25	0.00	62.25	-0.0567	0.0946	0.0289	-63.02	0.0000	0.0946	0.0636
	21	76.289	62.18	0.00	62.18	-0.0901	0.1710	-0.0217	76.46	0.0000	0.1710	-0.0927
22 83.247 62.00 0.00 62.00 -0.0325 -0.0099 -0.1993 9.25 0.0000 -0.0099 -0.2019	22	83.247	62.00	0.00	62.00	-0.0325	-0.0099	-0.1993	9.25	0.0000	-0.0099	-0.2019
23 86.056 61.94 0.00 61.94 -0.0242 0.1423 -0.0229 46.59 0.0000 0.1423 -0.0333	23	86.056	61.94	0.00	61.94	-0.0242	0.1423	-0.0229	46.59	0.0000	0.1423	-0.0333
24 93.353 61.79 0.00 61.79 -0.0420 0.0034 -0.0227 61.66 0.0000 0.0034 -0.0478	24	93.353	61.79	0.00	61.79	-0.0420	0.0034	-0.0227	61.66	0.0000	0.0034	-0.0478
25 98.084 61.70 0.00 61.70 0.0134 0.2395 -0.0007 -86.92 0.0000 0.2395 -0.0134	25	98.084	61.70	0.00	61.70	0.0134	0.2395	-0.0007	-86.92	0.0000	0.2395	-0.0134
26 104.158 61.60 0.00 61.60 0.0332 -0.0030 -0.1840 -10.24 0.0000 -0.0030 -0.1870	26	104.158	61.60	0.00	61.60	0.0332	-0.0030	-0.1840	-10.24	0.0000	-0.0030	-0.1870
27 110.063 61.51 0.00 61.51 -0.0262 -0.0543 -0.0084 72.29 0.0000 -0.0543 -0.0275	27	110.063	61.51	0.00	61.51	-0.0262	-0.0543	-0.0084	72.29	0.0000	-0.0543	-0.0275
28 114.293 61.46 0.00 61.46 -0.0809 0.0002 0.1057 -37.44 0.0000 0.0002 0.1331	28	114.293	61.46	0.00	61.46	-0.0809	0.0002	0.1057	-37.44	0.0000	0.0002	0.1331
29 121.733 61.37 0.00 61.37 0.0485 -0.0188 -0.0565 -40.64 0.0000 -0.0188 -0.0744	29	121.733	61.37	0.00	61.37	0.0485	-0.0188	-0.0565	-40.64	0.0000	-0.0188	-0.0744
30 124.858 61.33 0.00 61.33 -0.0489 -0.1035 0.0042 -85.15 0.0000 -0.1035 0.0491	30	124.858	61.33	0.00	61.33	-0.0489	-0.1035	0.0042	-85.15	0.0000	-0.1035	0.0491

ま5 200戸煙淮配筒の制激係数の主動士向(ガロー島士店)

ここで,1次モードと4次モードに就いて,最大応答変位を生じる節点(1次モードでは節点6,4次モードでは節点 5)の応答変位 D の θ に対する変化を示すと、図 3・図 4 となる。

ここで,応答変位 D は,変位ベクトルの 3 成分の SRSS 値で,次式による値である。尚, D には,モード次数 i や 節点 No.をサフィックスとして付けるべきであるが、特に誤解の恐れもないため、省略している。

 $D = \sqrt{D_{Xi}^2 + D_{Yi}^2 + D_{Zi}^2}$ (4)

ここで, D_{xi}, D_{yi}, D_{zi}:i 次モードの(ある節点での)変位応答ベクトルの XYZ 成分

図は, 原点からの長さが θ 方向の応答変位値 D となるように, ZX 平面上で θ 方向にプロットしたものである。3 次 元簡易配管の場合と全く同様に, 応答値の軌跡は, 原点(0,0)を通る 2 つの円となり, また, 円の直径は最大応答 変位値 D_{max}に一致し, 原点で接する「メガネ状の円」になった^(注記1)。

1 次モードの場合, 最大値は θ =86.91°で発生し, D_{max}=187.3mm である。また 4 次モードは θ =23.29°で発生し, D_{max}=179.0mm である。

図 5·図 6 は、 θを横軸として応答変位の変化を示したものである。

(注記1) 円になるのは、変位ベクトル(D_x, D_y, D_z)の長さに相当する(4)式に示す SRSS 値の Dを用いているからである。もし、 例えば、変位成分 D_xだけを描いた場合は、メガネ状の円ではなく、例えば、楕円が十字架状に連なった形状となったりするが、 実際形状は描いてみなければ分からない。関連資料(1)の(注記 6)を参照。

(2) 多自由度系の総合合成応答

図 7 に, 20B 標準配管の 1 次~30 次までの総合合成応答変位(SRSS 値で(5)式による)を示すが, 最大値は常 に節点 6 で発生し, 且つ, θ=60°で最大値 D_{max}=220.7mmとなる。その直交方向で, 最小値は D_{min}=156.6mmとな る。本配管の応答グラフは, 「メガネ状の円」にはほど遠く, 中央が少し括れた小判型となる。尚, 関連資料(1)か ら引用した 3 次元簡易配管モデルの「メガネ状の円」を図 8 に示すが, それとは大きく異なる。

どのような形になるかは、配管毎に実際に計算してみなければ分からない。

いずれにしても、 θ によるパラメータサーベイ計算を行えば(実際は、関連資料(1)の第5項に示した 5 ステップによる座標変換による計算であるが)、 このような図が得られ、最大値を把握することはできる。

 $\mathbf{D} = \sqrt{\mathbf{D}_{X\theta}^2 + \mathbf{D}_{Y\theta}^2 + \mathbf{D}_{Z\theta}^2}$ (5)

ここで, D_{xθ}, D_{yθ}, D_{zθ}: 地震入力はθ方向で, (ある節点での)変位応答の1次~30次の SRSS 合成値。 次の(6)式による値である。

$$D_{JK} = \sqrt{\sum_{i=1}^{30} D_{JKi}^2}$$
(6)

ここで、 D_{JKi}:i次モードの変位応答ベクトルの J 成分(地震入力 K 方向で K= θ)
 (J:ベクトル成分 XYZ, K:地震入力方向 XYZ θ, i:モード次数 1,2,3,4,・・・・,30)

図8 総合合成応答変位 節点6 (*θ*=105.61[°]で最大) (3次元簡易配管)

関連資料(1)からの引用図

(3) 最大応答値と水平 2 方向の応答合成に関する [5 法」の比較

最大応答を求めるための水平2方向の合成法には,本文⁽²⁾の第5.3.6節 表5.3-6(p.230)に示した5つの方法(以下,「5法」と略称する。)がある。即ち,①「パラメータθによる方法」,②「絶対値和」,③「SRSS 合成」,④「大き い成分の選択」,⑤「M₁の大きい方の選択」の5法である。

これら5法の大小関係に就いては、関連資料(3)に於いて検証しており、以下の関係が判明している。

 $5 \le 4 \le 1_{max} \le 3 \le 2$ (7)

また, ①と④の大小関係に就いては, 数式による一般検証ができないため, 例題による計算検証が必要となって いたが, これも, 3 次元簡易配管モデルを用いて関連資料(1)で検証した。

ここでは, 20B 標準配管の解析結果を用いて 5 法を比較検討し, 併せて, ①と④の大小関係に関して再検証する。

θによるパラメータサーベイ計算を行い、最大値を示す節点 6 に於いて、5 法に対する応答変位値(SRSS 値で、 (5)式による評価値)を算出して θ を横軸に展開すると、図 9 に示す通りとなった。

図9から以下のことが分かる。

基本的な傾向は, 関連資料(1)に示した3次元簡易配管の結果と同じである。

①に対し, ZX 方向の応答の「絶対値和」を取った②は, 絶対的に, 且つかなり保守的となることが分かる。

①の θ =60°に於ける最大値 D_{max}=220.7mmに対して、②は、最小 335mm~最大 367mm の値となる。3 次元簡易 配管モデルに就いても同じ傾向であるが、こちらは保守性が極めて大きいことが分かる。

③の「SRSS」は, *θ*には依存せず一定値示すのが特徴で, ①の最大値に近い値で, 且つ保守的である。①の最 大値 D_{max}=220.7mm に対し 263.7mm で, 約 20%大きい値である。これを設計評価に用いれば, 適度な保守性を常 に保持できる。尚, 3 次元簡易配管モデルに就いては, D_{max}=1161.4mm に対して 1183.8mm で, 2%しか余裕がなか ったが, 保守性は確保されていた。 ④の「大きい成分の選択」と⑤の「M₁の大きい方の選択」に就いては、図示のように、①が最大値を示す近傍では、 ①の数値をよくフォローし、ほぼ同じ値となる。また、その他の部分も、①より大きめの値を確保している。が、結 局、「①の最大値」(①_{max})に対して常時の保守性は維持できないことが分かる。これは、3次元簡易配管の場合 も同じである。従って、④と⑤に就いては、「①の最大値」(①_{max})に対する保守性が保証されていないため、採用 しない方がよいとの結論である。

以上の結果から、(7)式の関係が再確認され、また、③の SRSS により最大応答値を評価すれば、適度に保守的 な結果が得られることが改めて確認された^(注記2)。

(注記2)①と④の大小関係に関する例題検証は、変位応答ベクトルの長さに相当する式(5)による SRSS 値を用いての結果である。配管の強度評価などで用いる反力モーメントも全く同じ処理を行って SRSS 値の F₁や M₁を求めているので、それらに対して、上記の検証結果は当て嵌るが、それ以外、例えば、ベクトルの1成分だけを考える問題には当て嵌らない可能性もある。 従って、例題による計算検証は、必ずしも完璧な証明ではないことに留意願いたい。尤も、ここでの結論を援用して、④⑤を用いないと判断しても特に弊害は生じないと考える。

6. 関連資料

- (1) MSP0008-R00「3次元簡易配管モデルによる地震入力方向の検討」
- (2) 水野貞男「配管の設計解析法」エムエス配管解析技術, 2013年5月
- (3) MSP0003-R00「水平2方向地震力の合成方法の比較検証」