目 次

第1章 配管設計解析の概要	1
1.1 配管とは何か? ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 配管の役目	3
1.2.1 流路の役目 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2.2 機器間の熱膨脹吸収の役目 ・・・・・・・・・・・・・・・・・・・・・・・	3
1.3 配管設計とその特徴	
1.3.1 簡便な強度設計法	6
1.3.2 工場では完成しない機器	7
1.3.3 プラントの総合価値を決めるもの ・・・・・・・・・・・・・・	8
1.4 配管設計解析フロー	9
1.5 配管解析と解析作業フロー	16
第2章 解析哲学	23
第2章 府 初召子 2.1 解析哲学 ······	
2.1 解析日子 2.2 解析とは何か? ·····	
2.2.1 「超えられない質的な差」 ······	
2.2.2 「そこで用いられた物理化学的な原理を超える」結果	
2.2.3 避けられない「解析誤差」	
2.3 解析に対する期待 ····································	30
2.4 安全側の設計とは?	32
2.4.1 安全側の結果	32
 4.2 解析と安全側の結果 4.2 解析と安全側の結果 	34
2.4.3 誤差係数と安全係数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
2.5 解析結果の検証	38
2.5.1 解析結果の検証問題 ······	38
2.5.2 解析結果の妥当性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
2.5.3 解析結果のチェックは必要か?	43
2.6 解析に使用する入力データ	45
2.6.1 解析入力データと「設計値」 ・・・・・・・・・・・・・・・・・・・・・	45
2.6.2 公差の指定方法と解析用「設計値」	47
2.6.3 公差の大小と解析結果の揺らぎ	
2.7 許容値と比較する時の問題	
2.8 配管解析に於ける肉厚公差の影響の検討	59
第3章 配管設計基準	63
3.1 配管の各種設計基準	63
3.2 配管の強度評価体系	65
3.3 第1種配管の強度評価 ····································	67
3.3.1 最小必要肉厚の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
3.3.2 1次応力の制限 ······	
3.3.3 1 次+2 次応力の制限	
3.3.4 疲労評価	73
3.3.5 第1種配管の強度評価のまとめ 	76
3.4 第3種配管の強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
3.4.1 最小必要肉厚の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77

3. 4. 2	1 次応力の制限	77
3. 4. 3	1次+2次応力の制限	78
3. 4. 4	第3種配管の強度評価のまとめ	80
3.5 配管	の強度評価の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
第4章 配管	· 解析法 · · · · · · · · · · · · · · · · · · ·	
4.1 配管)	解析の概要	85
4.1.1	配管系の応力解析(撓性解析) ・・・・・・・・・・・・・・・・・	85
4.1.2	· · · · · · · · · · · · · · · · · · ·	87
4.1.3	応力指数	90
4.1.4	配管方程式	95
4.1.5	エルボの応力と変形・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
4.1.6	エルボの撓性係数	100
4.1.7	エルボの詳細応力指数と応力分布	105
4. 1. 8	ティーズの応力と変形	118
4.2 配管/	解析に於ける枝管の取扱い	123
4.2.1	枝管の取扱い上の課題	123
4. 2. 2	連成・非連成解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
4.2.3	技管の分離解析基準	124
4.2.4	技管分離解析の実用基準	126
4. 2. 5	分岐管部のモーメントの取扱い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
4.3 フラ	ンジ継手の取扱いとモデル化	132
4.3.1	フランジ継手の構造挙動	132
4.3.2	ボルト締結体の浮き上がり	132
4.3.3	モデル化とフランジ荷重による評価	134
4.3.4	フランジ荷重の計算と評価方法 どの取扱いとモデル化	135
4.4 弁な	との取扱いとモテル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
4.4.1	开のモテル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
4.4.2		140
4.5 文持/	構造物の取扱いとモデル化 支持構造物のモデル化上の問題点	141
4.5.1	文持構造物のモデル化上の問題点 配管サポートのモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	141
4.5.2	記官サホートのモテル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
4.5.3	文符構垣物の個別説明 架構構造物(共通架構サポート, パイプラック他) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	144
4. 5. 4	条柄構造物(共通条柄サホート, ハイノフツク他) ・・・・・・・・・・ 埋込み金物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
4. 5. 5		100
4.0.0	記管サポートの必要バネ定数の解析モデル化	102
4.0 BCE 4.6.1	の解析モテル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
4.0.1	シッシュテ討(安系テ討) 配管引き回しのモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
4. 6. 2 4. 6. 3	靴官りさ回しのモテル化 ·····・ 分岐管部のモデル化 ·····	109
4. 6. 4	が岐官部のモテル化 弁やストレーナ・フランジ継手などのモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	171
4. 6. 5	サペストレーチ・フランジ 極手なこのモテル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	179
4.0.0 4.7 配管	リホート部のモデル化	175
4. (BC'E') 4. 7. 1	通ይ評価用の運転リイクル ····· 運転サイクルを作る理由 ·····	175
4. 7. 1	運転サイクルを作る理田 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	170
4. (. 2)	毘払りゴクルでIF成りるよじの角息点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110

第	5	章	配律	ぎ設計解析の個別詳細 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
Ę	5.	1	圧力	に対する設計	181
		5.1	. 1	規格計算と解析的設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
		5.1	. 2		182
		5.1	. 3	鏡や平板の肉厚	184
		5.1	. 4	穴の補強計算	184
		5.1	. 5	内圧による応力	185
		5.1	. 6	圧力に対する規格計算 ·····	185
		5.1		圧力-温度レイティング(Pressure-Temperature rating) ······	191
		5.1	. 8		192
Ę	5.	2	自重	解析	196
		5.2	2.1	配管の自重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	196
		5.2	2.2	ハンガー点の決め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	196
		5.2	2.3	配管部品の重量見積もり	197
		5.2			200
		5.2	2.5	自重の見積もり誤差と設計マージン ・・・・・・・・・・・・	201
		5.2	2.6	自重用支持構造物の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	202
		5.2	2.7	配管の寸法誤差や施工誤差と重量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204
		5.2		自重解析に於ける課題	206
		5.2	2.9		211
Ę	5.	3	耐震	解析	213
		5.3	3.1	耐震設計の基本	213
		5.3			218
		5.3	3.3	減衰定数	220
		5.3	3.4	荷重の組合せと許容応力等	223
		5.3	3.5	機能維持の検討方法	225
		5.3	6.6	配管の耐震解析	228
		5.3	3.7	耐震解析法	231
		5.3	8.8	床応答スペクトルの作成法	237
		5.3	3.9		243
		5.3	3.10	地震の等価繰り返し回数	244
Ę		4		脹解析	246
		5.4	l. 1		246
		5.4		熱膨脹解析法	247
		5.4	1.3	配管の熱膨脹挙動 ・・・・・	247
		5.4	l. 4	熱膨脹解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	250
		5.4	l. 5		252
		5.4	l. 6	温度荷重条件	256
		5.4		熱膨脹解析と解析ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	259
		5.4	l. 8	熱膨脹応力レンジの算定とヤング率補正	264
		5.4	1.9	配管引き回しとサポートの最適化 ・・・・・・・・・・・・・・・・・	266
		5.4	l. 10	熱膨脹解析の具体的な手順	267
		5.4	l. 11	コールドスプリング法の検討	268
Ę		5	抽霍	相対変位解析	271
		5.5	i. 1		271
		5.5			272

	5.	6	熱過渡応力解析
		5.6	i.1 配管の熱過渡解析と熱応力
		5.6	b.2 熱過渡条件とその包絡 ······27
		5.6	6.3 熱過渡温度の評価式 ······27
		5.6	i.4 配管一般部の熱過渡応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 28
		5.6	6.5 構造不連続部熱応力 ······28
	5.	7	弹性追従解析 ······28
		5.7	7.1 弾性追従解析の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 28
		5.7	7.2 配管の弾性追従現象 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 28
		5.7	7.3 配管の弾性追従解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 28
		5.7	7.4 弾性追従解析・評価に於ける検討課題
第	6	章	配管設計に係わる特殊解析 28
	6.	1	安全弁吹き出しによる配管振動解析 29
	6.	2	水撃による配管振動解析 29
	6.	3	配管の自重と熱膨脹の非線形連成履歴解析 ・・・・・・・・・・ 29
	6.	4	サポートの無負荷抵抗や摩擦抵抗を考慮した熱膨脹解析 ・・・・・・ 30
	6.	5	配管の熱曲がり現象の解析
	6.	6	ベローズ付き配管の解析
	6.	7	2 重管解析
	6.	8	配管の詳細応力解析(容器設計)と非弾性解析 31
	6.	9	免震建物と配管設計 31
第	7	章	配管設計解析に関する参考資料 32
	7.	1	SAP IVでの要素・節点・局所座標系の定義 ······ 32
	7.	2	埋込み金物のバネ定数
	7.	3	機器ノズルに対する配管反力
	7.	4	温度計ウェルの流力振動 ・・・・・ 33
	7.	5	配管の流力振動・機械振動の回避 ····· 34
	7.	6	ベローズのバネ定数
	7.	7	ノズル付け根部のバネ定数35
	7.	~	配管サポートやアンカの必要バネ定数の計算
	7.	9	配管サポートのガタの取扱い ・・・・・ 36
	7.	10	配管サポートの据付け公差の検討
	7.	11	配管重量の大小の及ぼす影響の検討
	7.	12	曲げ負荷によるエルボの変形 ・・・・・ 38
	索	閁	